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— Critical issues of FRC research
— Magnetic Reconnection Experiment (MRX) device

 Theproposed experimentson MRX
— FRC Formation by merging counter-helicity spheromaks
— Current sustainment and amplifications by transfor mer
— Stabilization and sustainment by neutral beam injection
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Critical Issuesfor FRC Concept
“FRC 2001” (Stetnhauer et al.)

Develop reactor -relevant formation schemes
— Efficient and practical techniquesto form large-flux FRCs

Understand and control global stability
— Establish stable, large-s FRCs

Sustain FRC for much longer than the confinement time
— Decouple physics of sustainment from confinement

Characterize and understand transport properties
— ldentify main transport mechanisms



Recent Progress

Formation
— Slow formation of FRC by spheromak merging on TS-3 and SSX

Stability

— New understanding of kinetic stability through theory and
simulation studies

Sustainment

— Demonstrated FRC sustainment by Rotating M agnetic Field
(RMF) technique

Transport
— Resistivity and confinement scalings



Proposed FRC Experimentsto Address These
Critical Issues

Formation

— Counter-helicity spheromak merging to form FRCswith much
lar ger flux (~20mWb)

Stability

— Study global stability in wide parameter rangesfor shape and ion
Kinetic effects

Sustainment

— Demonstrate and study FRC sustainment (for ~1ms) by neutral
beam injection and current transfor mer

Transport
— Initial assessments of particle and heat confinement 5



Proposed Experiments Will Be Done on
Magnetic Reconnection Experiment (M RX)

* A highly-versatile device to study magnetic reconnection
and related topics

— also aspart of an NSF center on magnetic self-organization

e Existing facility includes
— Fluxcore systems
— Large power capacitor banks
— An extensive set of diagnostics

* Recently upgraded for the purpose of the extended
reconnection study

— Highly-leveraged investments for the proposed experiments on
FRC



Magnetic Reconnection Experiment




Newly Upgrade Vacuum Chamber
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Proposed Configuration to Study FRC
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FRC Formation on MRX
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2D MHD simulation for Rs=40cm, S*=18, n=1x10% cm-3:
1) Bext=1.0kG, 1p=120kA, T=350eV, Flux=15mWb
2) Bext=1.5kG, 1p=180kA, T=650eV, Flux=22mWb *




FRC Sustainment by Neutral Beam Injection

Favorable initial results from FIX
o Complimentary to RMF technique
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Beam Energy

Energy stability <5%

Beam Power Upto 1.5 MW for H
Beam Size 4.5"D with <10% losses
Beam Composition <10% of molecular ions
Current stability < 10%

Pulse duration =1 ms

Repetition Rate

1 pulse per >2 min

Distance from plasma center

1.8 m

Neutral Beam from M ST 12




| njection of Low-energy, High-current Neutral Beam
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FRC Sustained and Amplified by Current
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Recent Progress by State-of-art Simulations

o 3D hybrid (fluid electrons and full-orbit ions) and MHD simulation
codes (HYM)
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Stability Study in Wide Parameter Ranges
(Guidance from and Comparisons to Simulations)

o Experimental study of stability as functions of
— Plasma shape (0.5 < Elongation < 2)
— Kinetic parameter (5 < S*<40)
— Boundary conditions (close-fitting conducting shells)
— Flow and beam ions (neutral beam injection)

Mode Prolate (E>1) Oblate (E<1)
Internal tilt, n=1 MHD Unstable, stabilized by FLR, | MHD Stable
rotation and nonlinear effects for

S¥<20-30
External tilt and | MHD Stable MHD Unstable, stabilized
radial shift, n=1 by conducting shell
Co-interchange, MHD Unstable, stabilized by FLR MHD Unstable, requiring
n>1 velocity shear or NBI

Interchange, n=1 MHD Unstable, stabilized by | Same asleft
compressional effects
Rotational, n=2 MHD Unstable, stabilized by | Same asleft
quadrupole field and conducting shell




Favorable Preliminary Results with Conducting
Shellsand Beam lons

FRCswith S*=18 and 0.5<E<2 are highly unstable without conducting
shellsand beam ions

Conducting shells are effective to reduce growth of n=1 modes
Beam ions, when injected properly, suppressresidual low-n modes
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Summary

« Theproposed FRC experimentson MRX will explore
— Formation of large-flux FRC
— Sustainment by NBI and transfor mer
— Global stability in wide ranges of parameters, including shell and beam ions
— Initial assessments of transport in quasi-steady state plasmas

 Theproposed FRC program based on MRX
— Highly-leveraged on the existing facility and technologies
— Unique and exciting opportunitiesto advance the FRC concept

— Cost-effective, staged approach:
 FRC Formation
« Suatainment/amplification by transfor mer
* Installation of NBI

— State-of-art smulations available for guidance and comparisons
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Field-Reversed Configurations (FRCS)

 Highest possible beta
— Cost-effective and high-power-density reactors

e Smple geometry
— Advantagesin engineering requirements

e Uncertaintiesin formation, stability, sustainment
and confinement properties
— Require more exploratory studies

19



